
Download free eBooks at bookboon.com

Java: Classes in Java Applications

45

Extending Classes by Means of Inheritance

3. Extending Classes by Means of Inheritance

Chapter Three explores one of the cornerstones of OOP, namely that of inheritance. Java classes can be
easily modified and extended for the purpose of re-use by means of inheritance rather than by re-writing
the source code of the class to be modified.

3.1 What Does Inheritance Mean?

In order to explain what inheritance means in the Java language, let us consider a very simple example.
Suppose that we have a class called MyClass, with the following trivial class definition that declares a
single member:

public class MyClass {

 private int someValue;

 }

and suppose that we wish to re-use this class and, in doing so, we wish to give the replica a different name.
To do this, we would write the following class definition:

public class MyOtherClass {

 private int someValue;

 }

In other words, we have re-written the body of MyClass in the class definition of MyOtherClass. In our
trivial example, the effort of re-writing the body of MyClass is minimal in that there in only one member to
declare. In the general case, on the other hand, the effort of re-writing a large class definition ought to be
avoidable.

The concept of inheritance is common to OOP languages and avoids re-writing code from one class to
another. In the example above, the replica class definition is written as follows, to take advantage of the
concept of inheritance as it applies in Java.

public class MyOtherClass extends MyClass {

// the variable someValue is inherited and does not have to be declared again
 }

The keyword extends indicates that the class MyOtherClass inherits the single member of the class
MyClass so that it becomes a members of MyOtherClass.

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

46

Extending Classes by Means of Inheritance

The use of the keyword extends in the simple example above raises a question: what is the purpose of

replicating MyClass in the guise of MyOtherClass when we could simply use it as many times as we wish?

The answer to this question lies in the fact that inheritance means that inherited members can either be
modified or left unchanged. This important concept means that we can modify an inherited method if we
wish to and we are free to leave it (or other) inherited methods unchanged. We can also provide additional

methods in an extended class.

The next example enhances the one above to illustrate the true value of extending a class.

public class MyClass {

 private int someValue;

 public void someMethod(String string) {
 System.out.println(“This is the parent class.”);
 }

 }

and

public class MyOtherClass extends MyClass{

// MyOtherClass inherits both members of MyClass.

 }

Given that MyOtherClass inherits both members of MyClass, consider the test class shown next.

 public class TestClass {
 public static void main(String[] args) {
 MyOtherClass moc = new MyOtherClass();
 System.out.println("The value of someValue is: " + moc.someValue);
 }

}

When an attempt is made to compile the test class, the compiler outputs the following message:

someValue has private access in MyClass

The purpose of this simple example is to show that although the private variable someValue is inherited
by MyOtherClass, it is a private variable and, as such, is not directly accessible by selecting the member
via a reference to an object of the class MyOtherClass. The compiler highlights the statement

System.out.println("The value of someValue is: " + moc.someValue);

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

47

Extending Classes by Means of Inheritance

when it outputs its message because it is complaining that

moc . someValue

attempts to access a private variable, albeit an inherited one. Thus we can see that the compiler is
consistent when we attempt to access a private variable directly whether or not the variable is inherited.

In order to access the variable someValue, we could write an accessor method in MyClass and invoke it via
a reference to an object of MyOtherClass in a test class as shown next.

 public class MyClass {
 private int someValue = 42;

 public void someMethod(String string) {
 System.out.println(“This is the parent class.”);
 }

 public int getSomeValue() {
 return someValue;
 }
 }

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

Java: Classes in Java Applications

48

Extending Classes by Means of Inheritance

public class TestClass {
 public static void main(String[] args) {
 MyOtherClass moc = new MyOtherClass();
 System.out.println("The value of someValue is: " +
 moc.getSomeValue());
 }

}

Executing main produces the following output.

The value of someValue is: 42

and shows that the public accessor method getSomeValue is inherited by MyOtherClass.

Alternatively, we could modify the inherited method getSomeValue in order to carry out some simple
processing on someValue as shown next.

public class MyOtherClass extends MyClass {

 public int getSomeValue() {

 someValue ++ ;
return someValue;

 }

}

The modified method does not compile because it attempts to access an inherited private variable.
However, the following modification of the method does compile:

public class MyOtherClass extends MyClass {

 public int getSomeValue() {

 int value = 0;
 // invoke getSomeValue in MyClass

 value = super.getSomeValue();
 value = value + 1;
 return value;

 }

}

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

49

Extending Classes by Means of Inheritance

The same test class produces the following output; note the value is 43, not 42:

 The value of someValue is: 43
The statement

value = super . getSomeValue();

includes a call to getSomeValue ‘on’ an object with the reference ‘super’. The use of the keyword super

in this context refers to an object of the class MyClass from which MyOtherClass inherits its members and
shows that we can invoke methods of an extended class in the extending class by referring to the former
via the object reference super.

The relationship between MyOtherClass and MyClass is such that the latter is said to be the superclass of
the former or, looking at the relationship the other way round, the former is a subclass of the latter. The
IDE used to compile the three classes referred to in this section displays this relationship in the screen shot
shown in the next figure.

Figure 3.1 The relationship amongst classes used in Section 3.1

The solid line with the closed arrow indicates that MyOtherClass is a subclass of its superclass MyClass; in
other words, MyOtherClass has an ‘is a’ relationship with its superclass. The dotted line with the open
arrow shows that TestClass has a ‘has a’ relationship with MyOtherClass because TestClass declares a
local variable of the MyOtherClass type in its main method. (The dotted line between MyOtherClass and
TestClass should be a straight line according to the conventions of UML diagrams. It is a quirk of the IDE
that it does not draw straight lines for ‘has a’ relationships.)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

50

Extending Classes by Means of Inheritance

The simple example discussed in this section shows the superclass-to-subclass relationship between two
classes. In fact, all classes written in Java inherit implicitly from a class whose type is Object and, as a
consequence, inherit the members of the class Object. The following extract from the API shows some of
the members of the Object class.

java.lang

Class Object
 java.lang.Object

 public class Object

Class Object is the root of the class hierarchy. Every class has Object as a superclass. All objects,

including arrays, implement the methods of this class.

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Java: Classes in Java Applications

51

Extending Classes by Means of Inheritance

Method Summary
protected Object clone()

 Creates and returns a copy of this object.

 boolean equals(Object obj)

 Indicates whether some other object is "equal to" this one.

protected void finalize()

 Called by the garbage collector on an object when garbage
collection determines that there are no more references to the object.

Class<?> getClass()

 Returns the runtime class of this Object.

 int hashCode()

 Returns a hash code value for the object.

String toString()

 Returns a string representation of the object.

 void wait()

 Causes the current thread to wait until another thread invokes the

notify() method or the notifyAll() method for this object.

wait is overloaded; not shown here.

Thus, the class declaration for MyClass

public class MyClass

actually implies

public class MyClass extends Object

The extends clause is omitted because every Java object inherits from the class Object.

The next extract from the API shows that all classes provided by the Java development environment
inherit from the class Object.

java.lang

Class Short
java.lang.Object

 java.lang.Number
 java.lang.Short

The extract indicates that the class Short is a subclass of Number which is, in turn, a subclass of Object.

Before we move on to explore aspects of inheritance in Java more closely, let us summarise the principal
concepts introduced or implied by the discussion in this section.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

52

Extending Classes by Means of Inheritance

• Inheritance is the ability to create new classes from existing
ones;

• Java exhibits single inheritance; i.e. a subclass can have only
one superclass;

• fields and methods are inherited in a subclass; new ones can
be introduced;

• constructors are not inherited;

• a class called Object is at the top of the inheritance tree, as
shown by the Java API;

• all Java classes implicitly inherit from Object;

• a subclass can modify methods inherited from its parent class;
this is known as overriding; thus, an instance method with the
same signature and return type as a method in the superclass is
said to ‘override’ it;

• the keyword super is used to refer to the members of a
superclass, i.e. variables, methods and constructors; thus, an
overriding method can invoke the overridden method using the
keyword super;

• a method invocation does not have to be on a method in the
superclass; it can be to a method further up the class hierarchy.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Java: Classes in Java Applications

53

Extending Classes by Means of Inheritance

3.2 Overriding and Hiding Methods in a Subclass

Section 3.1 gives a simple example of overriding a method in a subclass. In essence, method overriding is
a means by which inherited behaviour can be modified to suit the specific logic of a subclass, where this is
derived from the general logic of its superclass. Thus, we can think of a superclass comprising members
that are common to its subclasses. Common members are inherited and may or may not be modified in
each subclass as required.

Consider, for example, the simple class hierarchy shown in the Figure 3.2 below.

Figure 3.2 A superclass and two of its subclasses

The class definitions of the three classes follow on the next two pages: some of the documentation has
been omitted for the sake of brevity.

public class Student {

// Declare instance variables.
 private int idNumber;
 private String degreeCourseCode;
 private int yearOfEnrollment = 2008;

public Student(int idNumber, String degreeCourseCode) {
 // Intialise two of the instance variables.

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

54

Extending Classes by Means of Inheritance

 this.idNumber = idNumber;
 this.degreeCourseCode = degreeCourseCode;
 }

 public int getIdNumber() {
 return idNumber;
 }

public String getDegreeCourseCode() {
 return "course code " + degreeCourseCode;
 }

 public int getYearOfEnrollment() {
 return yearOfEnrollment;

}

} // End of class definition.

public class FullTimeStudent extends Student {

// Declare instance variables.
 private String fullName;

 public FullTimeStudent(int idNumber,

String degreeCourseCode) {

 // Call the constructor for the superclass.
 super(idNumber, degreeCourseCode);
 }

 // This method overrides the getDegreeCourseCode method in Student; it also calls
 // the overridden method.
 public String getDegreeCourseCode() {
 return "This full-time student is enrolled on: " +
 super.getDegreeCourseCode();
 }

} // End of class definition.

public class PartTimeStudent extends Student {

// Declare instance variables.
 private String fullName;

 public PartTimeStudent(int idNumber,

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

55

Extending Classes by Means of Inheritance

String degreeCourseCode) {
// Call the constructor for the superclass.

 super(idNumber, degreeCourseCode);
 }

 // This method overrides the getDegreeCourseCode method in Student; it also calls
 // the overridden method.

public String getDegreeCourseCode() {
 return "This part-time student is enrolled on: "

 + super.getDegreeCourseCode();
 }

} // End of class definition.

An examination of the source code illustrates how an instance method with the same signature and return
type as a method in the superclass overrides it. Thus, the method getDegreeCourseCode in
PartTimeStudent overrides getDegreeCourseCode in Student. The example also shows how the keyword
super is used to invoke the overridden method in the body of the overriding method.

(One of the rules that govern method overriding states that an overriding method cannot throw different
types of Exception objects than the overridden method. We will find out how exceptions are handled in
the next chapter.)

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Java: Classes in Java Applications

56

Extending Classes by Means of Inheritance

A class method (i.e. a static method) with the same signature as a class method in the superclass is said to
“hide” it. For class methods, the runtime system invokes the method defined in the compile-time type of
the reference on which the method is called; for instance methods, the run-time system invokes the
method defined in the run-time type of the reference on which the method is called. This is illustrated by
providing the following method in the Student class definition.

public static String getDetails() {
 return "I am a student.";
 }

When the main method shown next is run

public class TestStudents {

 public static void main(String[] args) {

 // Create a Student object. The variable s is of the Student type, but refers to
 // a FullTimeStudent object (at run-time).
 Student s = new FullTimeStudent(1234, "Java");
 // Call the static method of Student.
 System.out.println(s.getDetails());
 // Call an instance method of FullTimeStudent.
 System.out.println(s.getDegreeCourseCode());
 }
 }

the output is:

 I am a student.
 This full-time student is enrolled on: course code Java

and illustrates the difference between a method invocation on a compile-time type and a run-time type.
There is one further rule to state concerning class methods at this point: an instance method cannot

override a static method and a static method cannot hide an instance method.

3.3 Invoking a Parent Class Constructor from a Subclass Constructor

A number of examples in previous sections show how the keyword super is used to invoke an overridden
method. The keyword super is also used to invoke a parent class constructor from a constructor of a
subclass. In fact, the call to super(< parameter list >) must be the first statement of a subclass constructor,
as illustrated above in the constructor of PartTimeStudent and FullTimeSudent.

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

57

Extending Classes by Means of Inheritance

There are a number of rules that pertain to the call to super(< parameter list >):

• it is necessary to initialise all fields of a superclass; therefore its
constructor must be called;

• a specific constructor is called as determined by the arguments
that are passed to the call to super; this is illustrated by the first
statement in the constructor for FullTimeStudent;

• if no call to super is used in a subclass constructor, the compiler
adds an implicit call to super() that calls the parent, no
argument constructor (which could be its default constructor);

• if the parent class define constructors but does not provide a no
argument constructor, an error message is issued by the
compiler if a call to super() is made from a subclass.

Given these rules, care should be taken when calling the correct superclass constructor from the first
statement of a subclass constructor.

3.4 final and abstract Classes

Figure 3.3 shows an enhanced version of the simple class hierarchy shown in Figure 3.2.

Figure 3.3 An enhanced version of Figure 3.2

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

58

Extending Classes by Means of Inheritance

The Employee class is labelled (by the IDE) as abstract. For the purposes of this simple example, the
Employee class is defined to be abstract because we do not want to instantiate objects of the Employee

class. Instead, we wish to instantiate objects of the Tutor class, in other words we wish to populate the
application with concrete employees such as Tutor, rather than use the abstract and generalised notion of
an employee. The class definitions for Employee is shown next.

public abstract class Employee {

// Declare instance variables.
 String department;

/**
 * This constructor initialises the variable with the identifier department.
 * @param department The employee's department.
 */
 public Employee(String department) {
 this.department = department;

}

// All subclasses of Employee must implement this abstract method.
// Note how it is declared.
public abstract String getDepartment();

} // End of class definition.

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

Java: Classes in Java Applications

59

Extending Classes by Means of Inheritance

The class definition of Tutor is next.

 public class Tutor extends Employee {

// Declare instance variables.
 private String tutorsName;
 // An array to store references to students.
 private Student [] studentsInJavaGroup;

/**
 * Constructor for objects of class Tutor.
 * @param department The tutor's department.
 */
 public Tutor(String department) {
 // Call the constructor of the superclass.
 super(department);
 }

 /**
 * Abstact method inherited from Employee; must be overridden.
 */
 public String getDepartment() {
 return department;
 }

 } // End of class definition.

It should be noted that an abstract class may declare abstract methods. For example, the abstract class
Employee declares an abstract method getDepartment that must be overridden in sublclasses of Employee.

The aim of the example shown in Figure 3.3 is to illustrate some of the following rules concerning
abstract classes:

• the complier prevents an abstract class from being directly
instantiated, though it usually has constructors that are called
from the constructor of its subclasses;

• an abstract class may have abstract methods:
- such methods contain no implementation;
- non-abstract subclasses must override these methods

and implement them;
- if all methods are abstract, the class should be an

interface; (we will find out what a Java interface is in
Chapter Five);

• any class with one or more abstract methods is called an
abstract class;

• abstract classes can have data attributes, concrete methods
and constructors.

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

60

Extending Classes by Means of Inheritance

At this point, it is useful to note that there is another category of class known as a final class. A final class
cannot be subclassed and a final method cannot be overridden.

3.5 What Does Type Compatibility Mean?

Now that we have explored some of the essential concepts associated with inheritance, we can address the
deferred discussion about conversion of type variables from Chapter Three (An Introduction to Java
Programming 3: The Fundamentals of Objects and Classes).

Java is a strongly-typed language. This means that the compiler
checks for type compatibility at compile time, preventing
incompatible assignments.

Checking for type compatibility is carried out when an expression is assigned to a type variable as follows:

SomeClass sc = < expression that returns an object reference >;

The compiler will regard the types as compatible when one of three conditions applies to the expression:

1. the expression returns an object reference of the SomeClass
type;

2. the expression returns an object reference to a subclass of
SomeClass;

3. the expression returns an object reference to an object that
implements the SomeClass interface. (Java interfaces are
explored in Chapter Five.)

We can use the class hierarchy shown in Figure 3.3 to illustrate the first two conditions.

Consider the following statement:

Student s1 = new Student(111, "Java");

This statement compiles because it complies with the first condition.

Consider the next statement:

Student s2 = new PartTimeStudent(222, "Java");

This statement compiles because it complies with the second condition.

It is worthwhile dwelling on the general nature of the second condition:

SuperClass sc = new SubClass();

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

61

Extending Classes by Means of Inheritance

Up to this point in the guide, we have created objects of a particular class by calling one of the
constructors of that class. However as the statement shows, this condition of compatibility is permitted in
Java. In other words, while the class of an existing object doesn’t change during its lifetime, it can be
referenced by a variable of either its own type or of its superclass type.

Therefore, we would expect the next statement to compile:

Student s3 = new FullTimeStudent(333, "Java");

In the statement above we are, in effect, converting between a subclass type and its superclass type when
we make the association of a FullTimeStudent to a Student.

Types higher up a hierarchy are said to be wider than the narrower types lower down the hierarchy. In the
statement

Student s3 = new FullTimeStudent(444, "Java");

the widening conversion, or upcast, is carried out automatically by the compiler. The implicit safe cast to
a Student object is valid at run-time when it can be shown that s3 refers to a FullTimeStudent object.

On the other hand, consider the next statement:

PartTimeStudent pts = new Student(555, "Java");

ENGINEERS, UNIVERSITY
GRADUATES & SALES
PROFESSIONALS
Junior and experienced F/M

Total will hire 10,000 people in 2014.
Why not you?

Are you looking for work in
process, electrical or other types of
engineering, R&D, sales & marketing
or support professions such as
information technology?

We’re interested in your skills.

Join an international leader in the
oil, gas and chemical industry by
applying at

www.careers.total.com
More than 700 job
openings are now online!

Potential
for development

C
op

yr
ig

ht
 :

To
ta

l/C
or

bi
s

for development

Potential
for exploration

http://bookboon.com/
http://bookboon.com/count/advert/f512d1dd-ebe8-4036-b221-a2f500bd9ae3

Download free eBooks at bookboon.com

Java: Classes in Java Applications

62

Extending Classes by Means of Inheritance

The compiler issues the following message:

 incompatible types: found Student expected PartTimeStudent.

A narrowing conversion or downcast in this statement will satisfy the compiler, as follows:

PartTimeStudent pts = (PartTimeStudent) new Student(555, “Java”);

If this kind of cast survives a compile-time check, a second check occurs at run-time to determine whether
the class of the object being cast is compatible with the object reference. In other words, a downcast may
not be a safe cast in the sense that it may not be valid at run-time.

When the statement

PartTimeStudent pts = (PartTimeStudent) new Student(555, “Java”);

is included in a main method and main is run, a run-time Exception occurs:

 java.lang.ClassCastException: Student cannot be cast to PartTimeStudent

and shows that this kind of cast is invalid at run-time.

In the context of the class hierarchy shown in Figure 3.3, the run-time rules imply that Student objects
cannot be cast to PartTimeStudent or FullTimeStudent objects, but that PartTimeStudent and
FullTimeStudent objects can be cast to Student objects. In other words, all PartTimeStudent and
FulTimeStudent objects are Student objects in that the former inherit from the latter, but all Student

objects are not necessarily FullTimeStudent or PartTimeStudent objects: a Student object may be a
Student object, as in the next statement:

Student s = new Student(999, “Java”);

While the type of an object reference may be obvious at compile-time, the actual class of the object
referenced in memory may be less obvious or may not be known until run-time. For example, consider the
following statement taken from the MediaStore class of the themed application.

Member[] members = someStream.readObject();

The purpose of the input stream someStream is to read the array of existing members of the Media Store
from a file into the application by calling the stream’s readObject method. (We will examine some of the
stream classes in Chapter One in An Introduction to Java Programming 3: Graphical User Interfaces).
The statement does not compile because the API states that the readObject method returns an object of the
Object type. Therefore, a cast is required, as follows:

Member[] members = (Member[])someStream.readObject();

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

63

Extending Classes by Means of Inheritance

On the face of it, (down)casting an Object object to an object of the Member[] type may not be valid at
run-time. In this case, however, the actual object stored in memory is of the Member[] type; therefore,
run-time compatibility is preserved.

Finally in this section, it is worth reminding the learner that the instanceof operator can be used to find out
the type of an object held in memory, so that a cast can be used to restore full functionality to the object.
For example, one of the test classes of the object hierarchy shown in Figure 3.3 includes the method
shown on the next page.

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

Java: Classes in Java Applications

64

Extending Classes by Means of Inheritance

public static void getDetails(Student student) {
// find out the type of the object passed when the method is called

 if (student instanceof PartTimeStudent)
 {
 // note the cast
 PartTimeStudent pt = (PartTimeStudent)student;
 // call an inherited method
 System.out.println("This part-time student enrolled in "
 + pt.getYearOfEnrollment());
 }
 else if (student instanceof FullTimeStudent)
 {
 FullTimeStudent pt = (FullTimeStudent)student;
 System.out.println("This full-time student enrolled in "
 + pt.getYearOfEnrollment());
 }
 else if (student instanceof Student)
 {
 System.out.print("This student enrolled in "
 + student.getYearOfEnrollment());
 }
 }

The reader should note how the instanceof operator and casting is used, in the method shown above, to
find out the type of Student object passed to it as an argument so that it can be processed accordingly.

3.6 Virtual Method Invocation

The rules of compatibility discussed in Section 3.5, raise a question when invoking methods: how do we

know which object is being used when invoking a method?

To illustrate the answer to this question, consider the following code snippet from a test class of the simple
application shown in Figure 3.3.

Student student = new PartTimeStudent(1234, "Java");
System.out.println(student . getDegreeCourseCode());

The output is:

This part-time student is enrolled on: course code Java

The output shows that when you invoke a method via an object reference, it is the run-time type of the
object referred to which governs which implementation is used. Thus, in the statement above, the object
reference student refers to a PartTimeStudent object and the call to

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

65

Extending Classes by Means of Inheritance

student . getDegreeCourseCode();

invokes the getDegreeCourseCode method implemented in the PartTimeStudent class definition and not
that in the Student class definition.

For class methods, on the other hand, the run-time system invokes the method defined in the compile-time

type of the reference on which the method is called. Thus, a call to the static method getDetails as follows

student . getDetails();

invokes the getDetails method of the Student class and not that of PartTimeStudent, as shown in Section
3.2 above.

3.7 Controlling Access to the Members of a Class

Access modifiers are used to determine whether other classes have access to a member of a class. Up to
this point in the guide, we have met the access modifiers public and private as they are applied to modify
declarations of fields and methods of a class. The access modifier public means that all other classes have
access to such members of a class and the access modifier private means that other members of a class
have access to private members of that class.

Extended classes give us an opportunity to explain a further access modifier: that of protected. The access
levels for the access modifiers public, private and protected are summarised in Table 3.1 shown on the
next page.

EADS unites a leading aircraft manufacturer, the world’s largest
helicopter supplier, a global leader in space programmes and a
worldwide leader in global security solutions and systems to form
Europe’s largest defence and aerospace group. More than
140,000 people work at Airbus, Astrium, Cassidian and Eurocopter,
in 90 locations globally, to deliver some of the industry’s most
exciting projects.

An EADS internship offers the chance to use your theoretical
knowledge and apply it first-hand to real situations and assignments
during your studies. Given a high level of responsibility, plenty of

learning and development opportunities, and all the support you need,
you will tackle interesting challenges on state-of-the-art products.

We welcome more than 5,000 interns every year across
disciplines ranging from engineering, IT, procurement and
finance, to strategy, customer support, marketing and sales.
Positions are available in France, Germany, Spain and the UK.

To find out more and apply, visit www.jobs.eads.com. You can also
find out more on our EADS Careers Facebook page.

Internship opportunities

CHALLENGING PERSPECTIVES

http://bookboon.com/
http://bookboon.com/count/advert/85f92380-2160-4386-98b4-a2540089b583

Download free eBooks at bookboon.com

Java: Classes in Java Applications

66

Extending Classes by Means of Inheritance

Table 3.1 Access levels

The first row confirms what we know about the access modifier private: i.e. the class itself has access to
other private members, as we would expect.

The second row indicates that if no modifier is specified, classes in the same package have access to such
members. We will encounter packages in Chapter Six. Until then, suffice it to say for the present purposes
that a package is a convenient way to group together a number of related classes to provide namespace
management.

The fourth row shows that all classes have access to public members, regardless of their package
and parentage.

The third row indicates the level of access provided when a class member is declared to be protected. The
first column indicates that other members of the class itself have access to the protected member of that
class; the second column indicates that classes in the same package, regardless of their parentage, have
access to the protected member of the class; the third column indicates that subclasses of the class have
access to the protected member, regardless of what package they are in. However, the subclass-protected
table entry has an interesting twist that we will defer until Chapter Six.

The example code that follows on the next page illustrates the ‘rules’ encapsulated in Table 3.1, but
ignores the second column for the time being.

http://bookboon.com/

Download free eBooks at bookboon.com

Java: Classes in Java Applications

67

Extending Classes by Means of Inheritance

Example One

public class MySuperClass {

 private int privateInt;
 protected int protectedInt;

 public void aMethod() {

 System.out.println(privateInt);
 System.out.println(protectedInt);
 }

}

The class compiles and merely shows that one of the members of the class – aMethod – has access to the
private and protected variables of the class.

Example Two

public class MySubClass extends MySuperClass {

 public void aMethod() {

 // System.out.println(privateInt);
// the statement above is illegal: privateInt has private access
// in MySuperClass

System.out.println(protectedInt);
 }

}

The class compiles and shows that the subclass does not have access to the private variable of the
superclass but that it does have access to the protected variable of the superclass.

Whilst on the face of it, the access level known as protected might be regarded as implying a high degree
of ‘protection’ from other classes, the table and example code above shows that this is not the case. The
class MySubClass shows that all subclasses of MySuperClass have access to protected members of
MySuperClass. Thus we can see that the protected access level is not as protected as private. Nevertheless,
it may be the case that the developer wishes to make a number of members of a superclass protected in
order to provide easy access to them from subclasses.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Java: Classes in Java Applications

68

Extending Classes by Means of Inheritance

3.8 Summary of Inheritance

Although it is not made explicit at the beginning of this chapter, the examples used aim to illustrate two

forms of inheritance. Rather than merely mention them both at the outset, it is to be hoped that both forms
emerge from the explanations and code examples used in the chapter.

The previous sections aim to show how a class can be extended or subclassed and that a subclass can be
used in code designed to work with the superclass. For example, FullTimeStudent objects can be used by
code designed to work with Student objects. If a method expects a parameter of the type Student, you can
pass it a FullTimeStudent object and it will work, although you are likely to have to find out the type of
the argument – by using the instanceof operator – and restore the full functionality of the object by a
suitable cast, as shown in Section 3.5. This feature of object references is known as polymorphism. An
object that is declared to be of the Student type can have many forms in that it can be used as a Student

object, a FullTimeStudent object, or a PartTimeStudent object.

The behaviour of a Student object is inherited by a FullTimeStudent object: the latter is said to extend the
former. Extended behaviour can be entirely new – by means of adding new methods to the subclass – or it
can modify inherited behaviour by overriding a method with the same signature and return type as the
overridden method. Thus an extended class can override the behaviour of its superclass by providing new
implementations of one or more of the inherited methods.

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers

http://bookboon.com/
http://bookboon.com/count/advert/0ba6aa54-2f19-4d35-9ee1-a00400a7e3c6

Download free eBooks at bookboon.com

Java: Classes in Java Applications

69

Extending Classes by Means of Inheritance

Overall, extending classes gives rise to two forms of inheritance:

1. inheritance of type, where the subclass acquires the type of the
superclass so that it can be used polymorphically in code
designed to work with the superclass type;

2. inheritance of implementation, where the subclass acquires the
implementation of the superclass in terms of its members.

Inheritance is a fundamental concept in OOP languages; as a consequence, further examples could have
been provided in this chapter to illustrate further the essential features of extending classes. At this stage,
however, it is probably wise to conclude this chapter and leave it to the leaner to work with extended
classes in practice and encounter concepts in practical situations.

The next chapter explains how errors are handled in Java programmes.

http://bookboon.com/

